GCE Examinations

Advanced Subsidiary

Core Mathematics C2

Paper C

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

C2 Paper C - Marking Guide

1. $(1-x)^{6}=1+6(-x)+\binom{6}{2}(-x)^{2}+\ldots=1-6 x+15 x^{2}$

M1 A1
$(1+x)(1-x)^{6}=(1+x)\left(1-6 x+15 x^{2}+\ldots\right)$
coeff. of $x^{2}=15-6=9$
M1 A1
2. (a) $\frac{a\left[1-\left(\frac{1}{3}\right)^{4}\right]}{1-\frac{1}{3}}=200$

M1 A1

$$
a=200 \times \frac{27}{40}=135
$$

A1
(b) $=\frac{135}{1-\frac{1}{3}}=202 \frac{1}{2}$

M1 A1
(5)
3. (a)

$$
\begin{aligned}
(-4,0) \quad \therefore & 0=4-20+16 k+128 \\
& 16 k=-112, k=-7
\end{aligned}
$$

M1
A1
(b) $4+5 x-7 x^{2}-2 x^{3}=0$
$x=-4$ is a solution $\therefore(x+4)$ is a factor
B1

$$
x+4 \begin{array}{r}
\frac{-2 x^{2}+x+1}{-2 x^{3}-7 x^{2}+5 x+4} \\
\frac{-2 x^{3}-8 x^{2}}{x^{2}+5 x} \\
\frac{x^{2}+4 x}{x}+4
\end{array}
$$

M1 A1

$$
\begin{aligned}
\therefore \quad & (x+4)\left(1+x-2 x^{2}\right)=0 \\
& (x+4)(1+2 x)(1-x)=0 \\
& x=-4(\text { at } A),-\frac{1}{2}, 1
\end{aligned}
$$

$$
\therefore\left(-\frac{1}{2}, 0\right),(1,0)
$$

4.

(a) (i)

(ii) $\quad(-60,-1),(120,1)$

B2
(b) $x-30=-180-20.5,20.5$

B1 M1

$$
=-200.5,20.5
$$

$x=-170.5,50.5(1 \mathrm{dp})$
M1 A1
(8)
5. (a) $=3-\log _{8} 8^{\frac{2}{3}}$

B1 M1 A1
$=3-\frac{2}{3}=\frac{7}{3}$
A1
(b) $\quad\left(2^{2}\right)^{x}-3\left(2 \times 2^{x}\right)=0$

M1
$\left(2^{x}\right)^{2}-6\left(2^{x}\right)=0$
$2^{x}\left(2^{x}-6\right)=0$
$2^{x}=0$ (no solutions) or 6
M1
$x=\frac{\lg 6}{\lg 2}=2.58(3 \mathrm{sf})$

A1
M1 A1 (9)
6. (a) $\mathrm{f}^{\prime}(x)=-1+2 x^{-\frac{1}{3}}$

M1 A1
$\mathrm{f}^{\prime \prime}(x)=-\frac{2}{3} x^{-\frac{4}{3}}$
(b) for TP, $-1+2 x^{-\frac{1}{3}}=0$

$$
x^{\frac{1}{3}}=2
$$

M1

$$
x=8
$$

A1
$\therefore(8,6)$
(c) $\mathrm{f}^{\prime \prime}(8)=-\frac{1}{24}, \mathrm{f}^{\prime \prime}(x)<0 \quad \therefore$ maximum

M1 A1 (9)
7. (a) $\operatorname{grad} P Q=\frac{8-2}{-3-(-5)}=3, \operatorname{grad} Q R=\frac{4-8}{9-(-3)}=-\frac{1}{3}$

M1 A1
$\operatorname{grad} P Q \times \operatorname{grad} Q R=3 \times\left(-\frac{1}{3}\right)=-1$
M1
$\therefore P Q$ perp. to $Q R, \therefore \angle P Q R=90^{\circ}$
A1
(b) $\angle P Q R=90^{\circ} \therefore P R$ is a diameter
\therefore centre $=$ mid-point of $P R=\left(\frac{-5+9}{2}, \frac{2+4}{2}\right)=(2,3)$
M1
M1 A1
(c) radius $=$ dist. $(-5,2)$ to $(2,3)=\sqrt{49+1}=\sqrt{50}$

B1
$\therefore(x-2)^{2}+(y-3)^{2}=(\sqrt{50})^{2}$
M1
$x^{2}-4 x+4+y^{2}-6 y+9=50$

$$
x^{2}+y^{2}-4 x-6 y=37 \quad[k=37]
$$

A1
(10)
8. (a) $=12 \times\left(2 \pi-\frac{2 \pi}{3}\right)=16 \pi \mathrm{~cm}$

M1 A1
(b) \quad chord $=2 \times 12 \sin \frac{\pi}{3}=24 \times \frac{\sqrt{3}}{2}=12 \sqrt{3}$

M1 A1

$$
\begin{aligned}
P & =\left(12 \times \frac{2 \pi}{3}\right)+12 \sqrt{3} \\
& =8 \pi+12 \sqrt{3}=4(2 \pi+3 \sqrt{3}) \mathrm{cm} \quad[k=4]
\end{aligned}
$$

M1

A1
(c) area of segment $=\left(\frac{1}{2} \times 12^{2} \times \frac{2 \pi}{3}\right)-\left(\frac{1}{2} \times 12^{2} \times \sin \frac{2 \pi}{3}\right)$

M2

$$
\begin{equation*}
=72\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)=88.443 \tag{10}
\end{equation*}
$$

as $\%$ of area of circle $=\frac{88.443}{\pi \times 12^{2}} \times 100 \%=19.6 \%(1 \mathrm{dp})$
M1 A1
9. $\begin{array}{lllllll}(a) & x & 2 & 4 & 6 & 8\end{array}$

x	2	4	6	8
$1+3 \sqrt{x}$	5.243	7	8.348	9.485
area $\approx \frac{1}{2} \times 2 \times[5.243+9.485+2(7+8.348)]$	M1 A1			
$=45.4(3 \mathrm{sf})$		B1 M1 A1		

(b) $=\int_{2}^{8}(1+3 \sqrt{x}) d x$
$=\left[x+2 x^{\frac{3}{2}}\right]_{2}^{8}$
M1 A1
$=\left[8+2(2 \sqrt{2})^{3}\right]-[2+2(2 \sqrt{2})]$
M1
$=(8+32 \sqrt{2})-(2+4 \sqrt{2})$
M1
$=6+28 \sqrt{2}$
A1
(c) $=\frac{(6+28 \sqrt{2})-45.4}{6+28 \sqrt{2}} \times 100 \%=0.43 \%$

M1 A1

Performance Record - C2 Paper C

Question no.	1	2	3	4	5	6	7	8	9	Total
Topic(s)	binomial	GP	$\begin{array}{\|c} \substack{\text { factor } \\ \text { theorem, } \\ \text { atg, div. }} \end{array}$		${ }^{\log 5}$	SP	circle	sector aircle circter	$\begin{gathered} \text { traperiuiu } \\ \text { culu } \\ \text { areaby } \\ \text { integr. } \end{gathered}$	
Marks	4	5	7	8	9	9	10	10	13	75
Student										

